17 resultados para Immunogenicity

em Queensland University of Technology - ePrints Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptococcus pyogenes, also known as Group A Streptococcus (GAS) has been associated with a range of diseases from the mild pharyngitis and pyoderma to more severe invasive infections such as streptococcal toxic shock. GAS also causes a number of non-suppurative post-infectious diseases such as rheumatic fever, rheumatic heart disease and glomerulonephritis. The large extent of GAS disease burden necessitates the need for a prophylactic vaccine that could target the diverse GAS emm types circulating globally. Anti-GAS vaccine strategies have focused primarily on the GAS M-protein, an extracellular virulence factor anchored to GAS cell wall. As opposed to the hypervariable N-terminal region, the C-terminal portion of the protein is highly conserved among different GAS emm types and is the focus of a leading GAS vaccine candidate, J8-DT/alum. The vaccine candidate J8-DT/alum was shown to be immunogenic in mice, rabbits and the non-human primates, hamadryas baboons. Similar responses to J8-DT/alum were observed after subcutaneous and intramuscular immunization with J8-DT/alum, in mice and in rabbits. Further assessment of parameters that may influence the immunogenicity of J8-DT demonstrated that the immune responses were identical in male and female mice and the use of alum as an adjuvant in the vaccine formulation significantly increased its immunogenicity, resulting in a long-lived serum IgG response. Contrary to the previous findings, the data in this thesis indicates that a primary immunization with J8-DT/alum (50ƒÊg) followed by a single boost is sufficient to generate a robust immune response in mice. As expected, the IgG response to J8- DT/alum was a Th2 type response consisting predominantly of the isotype IgG1 accompanied by lower levels of IgG2a. Intramuscular vaccination of rabbits with J8-DT/alum demonstrated that an increase in the dose of J8-DT/alum up to 500ƒÊg does not have an impact on the serum IgG titers achieved. Similar to the immune response in mice, immunization with J8-DT/alum in baboons also established that a 60ƒÊg dose compared to either 30ƒÊg or 120ƒÊg was sufficient to generate a robust immune response. Interestingly, mucosal infection of naive baboons with a M1 GAS strain did not induce a J8-specific serum IgG response. As J8-DT/alum mediated protection has been previously reported to be due to the J8- specific antibody formed, the efficacy of J8-DT antibodies was determined in vitro and in vivo. In vitro opsonization and in vivo passive transfer confirmed the protective potential of J8-DT antibodies. A reduction in the bacterial burden after challenge with a bioluminescent M49 GAS strain in mice that were passively administered J8-DT IgG established that protection due to J8-DT was mediated by antibodies. The GAS burden in infected mice was monitored using bioluminescent imaging in addition to traditional CFU assays. Bioluminescent GAS strains including the ‘rheumatogenic’ M1 GAS could not be generated due to limitations with transformation of GAS, however, a M49 GAS strain was utilized during BLI. The M49 serotype is traditionally a ‘nephritogenic’ serotype associated with post-streptococcal glomerulonephritis. Anti- J8-DT antibodies now have been shown to be protective against multiple GAS strains such as M49 and M1. This study evaluated the immunogenicity of J8-DT/alum in different species of experimental animals in preparation for phase I human clinical trials and provided the ground work for the development of a rapid non-invasive assay for evaluation of vaccine candidates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A randomized, double-blind, study was conducted to evaluate the safety, tolerability and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) co-administered with live attenuated yellow fever (YF) vaccine (YF-17D strain; Stamaril(®), Sanofi Pasteur) or administered successively. Participants (n = 108) were randomized to receive: YF followed by JE-CV 30 days later, JE followed by YF 30 days later, or the co-administration of JE and YF followed or preceded by placebo 30 days later or earlier. Placebo was used in a double-dummy fashion to ensure masking. Neutralizing antibody titers against JE-CV, YF-17D and selected wild-type JE virus strains was determined using a 50% serum-dilution plaque reduction neutralization test. Seroconversion was defined as the appearance of a neutralizing antibody titer above the assay cut-off post-immunization when not present pre-injection at day 0, or a least a four-fold rise in neutralizing antibody titer measured before the pre-injection day 0 and later post vaccination samples. There were no serious adverse events. Most adverse events (AEs) after JE vaccination were mild to moderate in intensity, and similar to those reported following YF vaccination. Seroconversion to JE-CV was 100% and 91% in the JE/YF and YF/JE sequential vaccination groups, respectively, compared with 96% in the co-administration group. All participants seroconverted to YF vaccine and retained neutralizing titers above the assay cut-off at month six. Neutralizing antibodies against JE vaccine were detected in 82-100% of participants at month six. These results suggest that both vaccines may be successfully co-administered simultaneously or 30 days apart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunized with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralizing antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1) and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1), an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results. The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap) alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions. We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used. © 2011 Tanzer et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a randomized, double-blind study, 202 healthy adults were randomized to receive a live, attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) and placebo 28 days apart in a cross-over design. A subgroup of 98 volunteers received a JE-CV booster at month 6. Safety, immunogenicity, and persistence of antibodies to month 60 were evaluated. There were no unexpected adverse events (AEs) and the incidence of AEs between JE-CV and placebo were similar. There were three serious adverse events (SAE) and no deaths. A moderately severe case of acute viral illness commencing 39 days after placebo administration was the only SAE considered possibly related to immunization. 99% of vaccine recipients achieved a seroprotective antibody titer ≥ 10 to JE-CV 28 days following the single dose of JE-CV, and 97% were seroprotected at month 6. Kaplan Meier analysis showed that after a single dose of JE-CV, 87% of the participants who were seroprotected at month 6 were still protected at month 60. This rate was 96% among those who received a booster immunization at month 6. 95% of subjects developed a neutralizing titer ≥ 10 against at least three of the four strains of a panel of wild-type Japanese encephalitis virus (JEV) strains on day 28 after immunization. At month 60, that proportion was 65% for participants who received a single dose of JE-CV and 75% for the booster group. These results suggest that JE-CV is safe, well tolerated and that a single dose provides long-lasting immunity to wild-type strains

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant-produced vaccines are a much-hyped development of the past two decades, whose time to embrace reality may have finally come. Vaccines have been developed against viral, bacterial, parasite and allergenic antigens, for humans and for animals; a wide variety of plants have been used for stable transgenic expression as well as for transient expression via Agrobacterium tumefaciens and plant viral vectors. A great many products have shown significant immunogenicity; several have shown efficacy in target animals or in animal models. The realised potential of plant-produced vaccines is discussed, together with future prospects for production and registration. © 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Virus-like particle-based vaccines for high-risk human papillomaviruses (HPVs) appear to have great promise; however, cell culture-derived vaccines will probably be very expensive. The optimization of expression of different codon-optimized versions of the HPV-16 L1 capsid protein gene in plants has been explored by means of transient expression from a novel suite of Agrobacterium tumefaciens binary expression vectors, which allow targeting of recombinant protein to the cytoplasm, endoplasmic reticulum (ER) or chloroplasts. A gene resynthesized to reflect human codon usage expresses better than the native gene, which expresses better than a plant-optimized gene. Moreover, chloroplast localization allows significantly higher levels of accumulation of L1 protein than does cytoplasmic localization, whilst ER retention was least successful. High levels of L1 (>17% total soluble protein) could be produced via transient expression: the protein assembled into higher-order structures visible by electron microscopy, and a concentrated extract was highly immunogenic in mice after subcutaneous injection and elicited high-titre neutralizing antibodies. Transgenic tobacco plants expressing a human codon-optimized gene linked to a chloroplast-targeting signal expressed L1 at levels up to 11% of the total soluble protein. These are the highest levels of HPV L1 expression reported for plants: these results, and the excellent immunogenicity of the product, significantly improve the prospects of making a conventional HPV vaccine by this means. © 2007 SGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human papillomaviruses (HPV) are responsible for the most common human sexually transmitted viral infections, and high-risk types are responsible for causing cervical and other cancers. The minor capsid protein L2 of HPV plays important roles in virus entry into cells, localisation of viral components to the nucleus, in DNA binding, capsid formation and stability. It also elicits antibodies that are more cross-reactive between HPV types than does the major capsid protein L1, making it an attractive potential target for new-generation, more broadly protective subunit vaccines against HPV infections. However, its low abundance in natural capsids-12-72 molecules per 360 copies of L1-limits its immunogenicity. This review will explore the biological roles of the protein, and prospects for its use in new vaccines. © 2009 Springer-Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

HIV-1 Pr55 Gag virus-like particles (VLPs) are strong immunogens with potential as candidate HIV vaccines. VLP immunogenicity can be broadened by making chimaeric Gag molecules: however, VLPs incorporating polypeptides longer than 200 aa fused in frame with Gag have not yet been reported. We constructed a range of gag-derived genes encoding in-frame C-terminal fusions of myristoylation-competent native Pr55Gag and p6-truncated Gag (Pr50Gag) to test the effects of polypeptide length and sequence on VLP formation and morphology, in an insect cell expression system. Fused sequences included a modified reverse transcriptase-Tat-Nef fusion polypeptide (RTTN, 778 aa), and truncated versions of RTTN ranging from 113 aa to 450 aa. Baculovirus-expressed chimaeric proteins were examined by western blot and electron microscopy. All chimaeras formed VLPs which could be purified by sucrose gradient centrifugation. VLP diameter increased with protein MW, from ∼100 nm for Pr55Gag to ∼250 nm for GagRTTN. The presence or absence of the Gag p6 region did not obviously affect VLP formation or appearance. GagRT chimaeric particles were successfully used in mice to boost T-cell responses to Gag and RT that were elicited by a DNA vaccine encoding a GagRTTN polypeptide, indicating the potential of such chimaeras to be used as candidate HIV vaccines. © 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Insect baculovirus-produced Human immunodeficiency virus type 1 (HIV-1) Gag virus-like-particles (VLPs) stimulate good humoral and cell-mediated immune responses in animals and are thought to be suitable as a vaccine candidate. Drawbacks to this production system include contamination of VLP preparations with baculovirus and the necessity for routine maintenance of infectious baculovirus stock. We used piggyBac transposition as a novel method to create transgenic insect cell lines for continuous VLP production as an alternative to the baculovirus system. Results Transgenic cell lines maintained stable gag transgene integration and expression up to 100 cell passages, and although the level of VLPs produced was low compared to baculovirus-produced VLPs, they appeared similar in size and morphology to baculovirus-expressed VLPs. In a murine immunogenicity study, whereas baculovirus-produced VLPs elicited good CD4 immune responses in mice when used to boost a prime with a DNA vaccine, no boost response was elicited by transgenically produced VLPs. Conclusion Transgenic insect cells are stable and can produce HIV Pr55 Gag VLPs for over 100 passages: this novel result may simplify strategies aimed at making protein subunit vaccines for HIV. Immunogenicity of the Gag VLPs in mice was less than that of baculovirus-produced VLPs, which may be due to lack of baculovirus glycoprotein incorporation in the transgenic cell VLPs. Improved yield and immunogenicity of transgenic cell-produced VLPs may be achieved with the addition of further genetic elements into the piggyBac integron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia is responsible for a wide range of diseases with enormous global economic and health burden. As the majority of chlamydial infections are asymptomatic, a vaccine has greatest potential to reduce infection and disease prevalence. Protective immunity against Chlamydia requires the induction of a mucosal immune response, ideally, at the multiple sites in the body where an infection can be established. Mucosal immunity is most effectively stimulated by targeting vaccination to the epithelium, which is best accomplished by direct vaccine application to mucosal surfaces rather than by injection. The efficacy of needle-free vaccines however is reliant on a powerful adjuvant to overcome mucosal tolerance. As very few adjuvants have proven able to elicit mucosal immunity without harmful side effects, there is a need to develop non-toxic adjuvants or safer ways to administered pre-existing toxic adjuvants. In the present study we investigated the novel non-toxic mucosal adjuvant CTA1-DD. The immunogenicity of CTA1-DD was compared to our "gold-standard" mucosal adjuvant combination of cholera toxin (CT) and cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN). We also utilised different needle-free immunisation routes, intranasal (IN), sublingual (SL) and transcutaneous (TC), to stimulate the induction of immunity at multiple mucosal surfaces in the body where Chlamydia are known to infect. Moreover, administering each adjuvant by different routes may also limit the toxicity of the CT/CpG adjuvant, currently restricted from use in humans. Mice were immunised with either adjuvant together with the chlamydial major outer membrane protein (MOMP) to evaluate vaccine safety and quantify the induction of antigen-specific mucosal immune responses. The level of protection against infection and disease was also assessed in vaccinated animals following a live genital or respiratory tract infectious challenge. The non-toxic CTA1-DD was found to be safe and immunogenic when delivered via the IN route in mice, inducing a comparable mucosal response and level of protective immunity against chlamydial challenge to its toxic CT/CpG counterpart administered by the same route. The utilisation of different routes of immunisation strongly influenced the distribution of antigen-specific responses to distant mucosal surfaces and also abrogated the toxicity of CT/CpG. The CT/CpG-adjuvanted vaccine was safe when administered by the SL and TC routes and conferred partial immunity against infection and pathology in both challenge models. This protection was attributed to the induction of antigen-specific pro-inflammatory cellular responses in the lymph nodes regional to the site of infection and rather than in the spleen. Development of non-toxic adjuvants and effective ways to reduce the side effects of toxic adjuvants has profound implications for vaccine development, particularly against mucosal pathogens like Chlamydia. Interestingly, we also identified two contrasting vaccines in both infection models capable of preventing infection or pathology exclusively. This indicated that the development of pathology following an infection of vaccinated animals was independent of bacterial load and was instead the result of immunopathology, potentially driven by the adaptive immune response generated following immunisation. While both vaccines expressed high levels of interleukin (IL)-17 cytokines, the pathology protected group displayed significantly reduced expression of corresponding IL-17 receptors and hence an inhibition of signalling. This indicated that the balance of IL-17-mediated responses defines the degree of protection against infection and tissue damage generated following vaccination. This study has enabled us to better understand the immune basis of pathology and protection, necessary to design more effective vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunogenicity and reactogenicity of DTPa and reduced antigen dTpa booster vaccines were compared to a hepatitis A control vaccine in DTPa-primed toddlers aged 18-20 months. Post-booster, all DTPa and dTpa recipients were seroprotected against diphtheria and tetanus, and >= 93.3% had a booster response to pertussis. There were similar reactogenicity rates in the DTPa and dTpa vaccine recipients. Few Grade 3 symptoms were reported. Just over one in four children in the control group had diphtheria antibody at or potentially below the correlate of protection benchmark (0.016 IU/ml). Larger studies should evaluate potential benefits of reduced antigen vaccines and seroprotection in children who do not receive a booster dose of DTPa at this age, including protection against diphtheria until subsequent booster doses are given. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In responding to future influenza pandemics and other infectious agents, plasmid DNA overcomes many of the limitations of conventional vaccine production approaches.